Oscilloscope Probes

Oscilloscope probing

- three ways how to connect an oscilloscope to a signal source:
 - 1) direct connection to the coaxial input
 - typically used in 50 Ω signal paths with 50 Ω termination selected
 - preferred method (high signal quality; works well to high frequencies)
 - limited to 5 Vrms into 50 Ω and to tens to hundreds of V into 1 M Ω
 - channel grounds are connected together and with the power cord ground users need to be careful when using single-ended probes

Oscilloscope probing

2) fixtures

 adapter between some specific connector/interface and one or more coaxial connectors - USB, LAN, HDMI, PCIe

3) probes

- probes facilitate the connection between the measured circuit and the oscilloscope; many kinds of probes for different measurement needs
- power measurements are generally not possible without special voltage and current probes

Oscilloscope probing

- an ideal probe would:
 - be able to reach any point of the DUT
 - present a perfect replica of the measured signal
 - have an infinite range and would not add any noise
 - would not affect the probed circuit
- unfortunately, ideal probes do not exist:
 - probes influence the measured circuit and change the signal shape
 - at the same time, they are not able to reproduce the measured signal 100 % correctly non ideal frequency response; noise, ...
 - it can be difficult to reach and contact the measurement point

Types of probes

Passive voltage probes

- rugged, inexpensive, wide dynamic range; only single-ended
- high impedance
 - relatively high bandwidth 500 MHz ~ 1 GHz
 - 10:1 most common; ~ 400 V rms
 - 100:1 − ~ 2 to 3 kV rms
 - high capacitive loading
- low impedance
 - requires 50Ω scope input
 - low C/high R loading
 - up to 1,5 GHz

Active voltage probes

- better signal integrity (less parasitics), lower circuit loading
- differential or single-ended
- more expensive

"high speed"

- higher bandwidth (52 GHz)
- low input voltage (diff/common)
- in circuit testing on digital buses

"high voltage"

- lower bandwidth (hundreds of MHz)
- higher input voltage
- general purpose or special high voltage measurements

Current probes

- current → voltage converters
- AC/DC probes:
 - Hall-Effect clamp-on probes
 - bandwidth up to 150 MHz
 - currents of up to 700 A
 - can be easily connected to the measured conductor
 - probes with resistive shunt
 - Keysight N2820A / N2821A special high-sensitivity probes
 - measurement on internal or external shunt resistors

Current probes

- AC only probes:
 - 1) current transformers with magnetic core
 - higher sensitivity, electrical isolation
 - prone to DC saturation, lower bandwidth, bulky, not easy to connect to the circuit, higher insertion inductance, worse linearity
 - from low to very high currents (tens of kA peak)
 - bandwidth of up to 60 MHz (for lower current versions)

Current probes

- 2) Rogowski coil probes (with air core)
 - low insertion impedance, higher bandwidth, great linearity, no magnetic saturation, electrical isolation
 - very flexible to use coil is easy to wrap around a conductor
 - affected by external magnetic fields, worse sensitivity
 - sensitive to fast electric field changes (solved by shielding)
 - 100 MHz BW; up to 120 kA peak

Probe interfaces

oscilloscope probes can have a universal BNC interface

- expects a 1 M Ω or a 50 Ω input on the oscilloscope
 - in case that 50 Ω is required on a 1 M Ω only scope; a 50 Ω feed-thru load can be used
- active probes need to be powered and in this case, the power can be supplied from a battery or an external power adapter
- probe parameters need to be configured manually in the scope
- some active probes use special interfaces proprietary to a specific oscilloscope manufacturer
 - probe interface supplies power to the probe and provides communication;
 probe setup is done automaticaly

Keysight probe interfaces

AutoProbe I:

AutoProbe II:

AutoProbe III:

PMK oscilloscope probes

- PMK is a German manufacturer of a wide range of oscilloscope probes:
 - passive single-ended
 - MMCX series probes with coaxial connection and low capacitive loading
 - ENVI series high temperature probes 500 MHz, 400 V
 - PHV(X) high voltage passive probes
 - active differential
 - HSDP series high speed probes up to 4 GHz and 42 V
 - active single-ended
 - Sonic, Tetris series high speed up to 4 GHz and 20 V
 - current probes Hall efect, Rogowski, current transformers, ...

PMK BumbeBee and HORNET

- industry leading high voltage differential probes
 - for less demanding applications than the FireFly, but still very good
- up to 500 MHz BW (depending on the model and selected range)
- five models; up to 200 / 400 / 1000 / 2000 / 4000 V
 - each model has four selectable ranges with different division factor
- high CMMR 80 dB (DC) to 35 dB (400 MHz) to 80 dB (DC)
- up to 7 m cable length
- universal BNC interface; usable with any oscilloscope
- · very wide selection of connection accessories (standard)

- special differential high voltage optically isolated probe
- 1.5 GHz BW; ± 60 kV common mode and 2.5 kV differential input
- unmatched CMMR (> 180 dB up to 500 kHz; 80 dB at 1 GHz)
 - the probe is able to resolve high bandwidth and small amplitude differential signals in presence of large common mode voltages
- ideal for GaN / SiC high side V_{GS} measurements
- wide range of input tips and other connection accessories
- universal BNC interface can be used with any oscilloscope
- probe head is battery powered
 - there will be a "power over fibre" option soon

Typical measurement setup

High-side measurement

The voltage at the switch node (V_{SW}) swings between the supply voltage (1000V) and the low-side reference voltage (GND).

Common Mode Voltage = 1000 VDiff. Voltage (HS V_{GS}) = 1020 - 1000 = 20 V

High-side V_{GS} measurement

• resulting common mode error - FireFly with the 25V Input Tip vs. the BumbleBee 1000 V differential probe:

Frequency	CMMR FireFly		CM Error FireFly	CMMR BumbleBee		CM Error Bumblebee
	(dB)	linear		(dB)	linear	
DC	180	1,000,000,000	1 μV	80	10,000	100 mV
1 MHz	137	7,079,458	141 μV	70	3,162	316 mV
100 MHz	91	35,481	28 mV	40	100	10 V
200 MHz	87	22,387	44 mV	40	100	10 V
500 MHz	86	19,952	50 mV	35	56	18 V
1 GHz	86	19,952	50 mV			

PMK UFCS (Ultra-Fast Current Shunt)

- solder-in fast current shunts with small form factor, high current capabilities and coaxial output
 - for WBG (SiC/GaN) switching loss and pulse current measurements
 - ideal in combination with the FireFly probe
- very high bandwidth > 1 GHz
- ultra low insertion impedance < 200 pH
- available in different resistance versions $(5m\Omega, 11m\Omega, 24m\Omega, 52m\Omega)$

PEM CWT Rogowski current probes

- Power Electronic Measurements (PEM) company specializes in the design and manufacture of current probes based on Rogowski technology
- very wide range of probes with different sizes and parameters
 - some models offer electrostatic shielding which increases the immunity to fast voltage transients or large AC voltages
 - bandwidth of up to 50 MHz

