Measurement of properties of electronic components

- 9:15 start of the seminar
- 9:30 impedance basics
- 10:00 impedance measurement methods, instruments, ...
- 11:45 lunch break
- 12:45 DC components characterisation
- 13:15 measurement of material properties
- 14:30 discussion
- 15:00 end of the seminar

Impedance

- very important parameter used to characterize electrical circuits, components and materials
- impedance is defined as a measure of the total opposition to the flowing alternating current
- complex value
 - can be expressed in a form of a real and imaginary part...
 - ... or as an absolute value and phase angle
 - the real part represents the energy losses and the imaginary part the energy stored in the given circuit

Impedance

• impedance:

$$\vec{Z} = \frac{\vec{U}}{\vec{I}} = R + jX$$
 (Ω) (resistance / reactance)

• reciprocal value is **admitance**:

$$\vec{Y} = \frac{1}{\vec{Z}} = \frac{\vec{I}}{\vec{U}} = G + jB$$
 (S) (conductance / susceptance)

Impedance

$$\mathbf{Z} = \mathbf{R} + \mathbf{j}\mathbf{X} = |\mathbf{Z}| \angle \theta$$

 $R = |Z| \cos \theta$ $X = |Z| \sin \theta$

$$|\mathsf{Z}| = \sqrt{\mathsf{R}^2 + \mathsf{X}^2}$$

 $\theta = \tan^{-1} (X/R)$

Quality factor / dissipation factor

- quality factor Q can be used to evaluate the "purity" of reactive components (inductors and capacitors)
 - the ratio between the energy stored in a given component and the energy transformed into heat
 - dissipation factor "D" is reciprocal of the Q

$$Q = \frac{1}{D} = \frac{1}{\tan \delta} = \frac{X_L}{R} = \frac{-X_C}{R} = \frac{-B_L}{G} = \frac{B_C}{G}$$

Impedance – basic circuit components

• resistor (implements electrical resistance R)

Z = R

• inductor (implements electrical inductance L)

 $Z = j2\pi f \cdot L = j\omega L$

• capacitor (implements electrical capacitance C)

$$Z = -j\frac{1}{2\pi f \cdot C} = -j\frac{1}{\omega C}$$

Description of the components

- ideal (nominal) value
 - primary value (R/L/C); omiting all parasitic properties
 - fixed value doesn't depend on frequency, ...
- real value
 - includes the influence of all the parasitic properties
 - depends on frequency and all the external influences
- measured value
 - value indicated by the measuring instrument during component characterisation
 - real value + errors of the measurement setup

Description of the components

- ideal components do not exist; it is always necessary to take into account their real characteristics
- the influence of the parasitics always depends on the current operating point of the component (frequency, ...)
 - at low frequencies the component can be almost ideal
 - with increasing frequency, depending on the quality of the component, the characteristics deteriorate
 - the resulting properties of the component can be also (negatively) affected by the way it is used incorrect mounting (overheating), component surroundings, ...

- the component can be described explicitly by measuring it's impedance in the frequency band of interrest; more common approach is to use equivalent circuit models
- two-element series/parallel equivalent models
 - L or C in series/parellel with an R
 - usable at low frequencies or in a narrow frequency band
 - can be derived from measurements at a single frequency

- the suitable model can be chosen depending on:
 - the nature of the component (inductance/capacitance)
 - the ratio between the impedances of the "main" and parasitic property of the component at a given frequency

-Rp

Log f

Rp (G)

- three- a multi-element models
 - with an increasing number of model elements the component can be described more accurately and in a wider frequency band
 - modern impedance analyzers can select the model automatically
 - in order to correctly calculate the values, it is necessary to measure the impedance at multiple frequencies (frequency sweep)

1) frequency

- frequency dependency is always present
- it's influence changes with the ratio between the primary value of the component and the main parasitics
- it can be quite different depending on the design of the component (it is necessary to choose higher-quality components for high-frequency applications)

• simplified equivalent circuit of a capacitor:

• simplified equivalent circuit of an inductor:

• simplified equivalent circuit of a resistor (large and small):

2) test signal level

- for example with ceramic capacitors (voltage dependence) or cored inductors (current dependence)
- 3) DC bias
 - strong with semiconductor components diodes, transistors
 - again ceramic capacitors or cored inductors saturation

4) temperature

- temperature dependence for some types of components
- 5) other external influences
 - humidity, magnetic field, light, time (aging), ...

Measurement methods

- 1) self-balancing bridge
 - frequency range from 20 Hz to 120 MHz
 - high basic accuracy (0,1 %) and wide impedance range
- 2) RF I-V method
 - frequency range from 1 MHz to 3 GHz
 - relatively good accuracy (0,7 %) a measurement range
- 3) measurement using a VNA
 - frequency range from 5 Hz up
 - relatively narrow impedance measurement range
 - three different measurement configurations suitable for different impedance values

Measurement methods

comparison of the three basic measurement methods:

Self-balancing bridge

- bridge circuit maintains a virtual ground voltage on one of the DUT poles; current thru DUT = current thru Rr
- Vx (on the DUT) and Vr (on the Rr) are measured using a single switchable vector volt meter
- current flowing through the DUT can be calculated from known **Rr** and measured **Vr**

Self-balancing bridge

 simplified circuit diagram for low frequency instruments (~ hundreds of kHz):

Self-balancing bridge

• high frequency instruments (> hundreds kHz):

DUT terminal

- measuring terminal consists of four BNC connectors
 - two potential and two current terminals; the outer conductors represent a common measuring ground (guard)
 - measurement reference plane

- many BNC measuring fixtures available
 - can be connected directly to the instrument (recommended)
 - or using an extension leads (typically 1, 2 or 4 m long)

Two-terminal configuration (2T)

- simplest method, usable up to higher frequencies
- many error sources, limited measurement range

Three-terminal configuration (3T)

- reduce stray capacitance between H and L terminals
- usable for measurement of higher impedances

Four-terminal configuration (4T)

- "Kelvin" connection
- can be used for measurement of small impedances
- same limitations by the stray capacitance as with the 2T method
- possible mutual coupling between voltage and current conductors

Five-terminal configuration (5T)

- combines the advantages of 4T and 3T (shielding) configuration
- wide measurement range; the mutual coupling remains

1m

Four-terminal pair configuration(4TP)

- removes the effects of magnetic coupling
- widest measurement range; limited frequency range

 stray capacitances can cause leakage currents through nearby conducting objects

 this effect can be removed using the "Guard" terminal which has the potential of the virtual ground

- calibration of the instrument (in the reference plane of the BNC connectors) is performed only occasionally (for example once a year)
- in case an extension cable is used, it is necessary to make a correction for it's length
 - original cables supplied by the manufacturer can be selected in the menu; use of custom cables is not recommended
- after connecting a fixture to the DUT terminal, it is necessary to perform a **compensation**
- **compensation** removes parasitic effects of the fixture; everything between the DUT and the BNC connectors

- simplest compensation uses **open** and **short** standards
 - usable (and recommended) on low frequencies and for "uncomplicated" fixtures
 - error model with R and L in series and G and C in parallel:

- open, short and load compensation
 - used for more "complicated" meas. configurations
 - assumes an error four-terminal network
 - requirements on the load standard:
 - well defined and highly stable R or C
 - ideally the same dimensions as DUT

- summary of the common measurement configurations:
- 1) standard fixture from Keysight directly on the instrument
 - open/short compensation (on lower frequencies)
- 2) fixture from Keysight connected thru an extension cable
 - cable correction + open/short compensation
- 3) standard Keysight extension cable + custom fixture
 - cable correction + open/short/load compensation
- 4) custom extension cable + custom fixture
 - open/short/load compensation only
 - test which method works best

- LCR meter Keysight E4980A / E4980AL
 - 20 Hz 2 MHz

- LCR meter GW Instek LCR-6000
 - 10 Hz 300 kHz

- impedance analyzer Keysight E4990A
 - 20 Hz 120 MHz

- impedance analyzer GW Instek LCR-82xx
 - 10 Hz 50 MHz

Accessories

- various test fixtures for all DUT types:
 - SMD components for different types and sizes
 - 2T or 4T clamps; hand browsers
 - material measurement fixtures solids, fluids
 - 4xBNC to APC7 adapter
 - extension cables

RF I-V method

- an advanced and relatively accurate measurement method for use at higher frequencies
 - frequency range from 1 MHz to 3 GHz
 - preferred method between 120 MHz and 3 GHz
 - beter accuracy and wider impedance measurement range compared to VNAs
 - direct voltage and current measurement linear impedance dependence → the sensitivity of impedance measurement is theoretically constant

Basic accuracy – RF I-V method

RF I/V method

• the RF impedance analyzers use a APC-7 coaxial connector for fixture connection

 same as with the LF instruments, various fixtures exist for different types of components

- the influence of parasitic elements increases with increasing frequency
 - from 100 MHz up, the accuracy of the measurement and the usable measuring range decrease significantly
- to minimize the influence of parasitics:
 - minimizing the dimensions of the measuring fixtures and the distance between the DUT and the test port
 - a coaxial line should go as close to the DUT as possible
 - carefull connection of calibration/compensation standards and the DUT to the measuring system
 - use of coaxial fixtures for best results on high frequencies

• coaxial vs. non-coaxial (radial) SMD fixtures:

• coaxial vs. non-coaxial (radial) SMD fixtures:

To test port

- O/S/L (+ optional C) coaxial **calibration** has to be performed on the APC-7 test port of the analyzer
 - in case an extension coaxial line is used, the calibration is performed at it's end
- fixture **compensation** has in this case two steps:
 - entering the length of the short coax line in the fixture
 - open/short compensation of the fixture residuals
- for non-standard custom fixtures, it is recommended to do a OSL calibration directly at the DUT connection point (for example with probing stations, ...)

• RF fixture error model:

Measurement repeatability

- error sources which can cause bad repeatability:
- 1) connection of the calibration/compensation standards
 - carefull positioning of the standards
 - contacting parasitic resistance, ...
- 2) connection of the DUT
- 3) EM coupling to nearby conductors
 - parasitic capacitance or magnetic coupling
 - sufficient distance from conducting objects
- 4) environmental changes (temperature drift, ...) and other external influences

• impedance analyzer Keysight E4991B

High frequency measurements

• sensitivity comparison - RF I-V vs. VNA reflection:

Measurement using VNA

- worse accuracy and limited measurement range
- very wide (virtually unlimited) frequency range
 - from 5 Hz up
- three different methods of imp. calculation using a VNA:
 - **1)** from reflection (S11, S22, ...):
 - general and simplest method
 - can be used with the standard fixtures for the E4991A
 - optimal for lower to middle range of impedances (around 50 Ω)

VNA – impedance from reflection

• basic accuracy of the reflection method:

VNA – impedance from reflection

• calibration and compensation (same as with the E4991A)

VNA – "series-thru" method

2) imp. calculation from transmission – "series-thru":

 measured impedance is connected in series with the center conductor of a transmission line between two test ports

- ideal for larger impedances
- 10 % accuracy between ~ 5 Ω and 20 $k\Omega$

VNA – "series-thru"

• basic accuracy for the "series-thru" method:

VNA – "shunt-thru"

3) imp. calculation from transmission – "shunt-thru":

- measured impedance is connected between the center and ground conductors of the transmission line
- ideal for small impedances
- 10 % accuracy between ~ 1 m Ω and 100 Ω

VNA – "shunt-thru"

• basic accuracy for the "shunt-thru" method:

Measurement using VNA

• comparison of the calculation methods using VNA:

- VNA Keysight ENA E5061B
- 16201A APC-7
 adapter kit

Available accessories

- SMD fixtures
 - for different component sizes
 - coaxial and non-coaxial versions
 - SMDs with parallel (from sides) or bottom contacts
- high temperature fixture (both SMD and lead components)
- fixtures for material measurements
 - dielectric and magnetic materials
- accessories for connecting to probing stations

Available accessories

- FormFactor (former Cascade Microtech)
 - probe stations –from simple manual systems up to advanced semi-automatic stations
 - very broad portfolio of probes and other accessories

Available accessories

Impedance measurements - information

• comprehensive information in this handbook:

Impedance Measurement Handbook A guide to measurement technology and techniques 5th Edition (apliapplication note; Keysight Technologies)

• fixtures and other accessories:

Accessories Selection Guide For Impedance Measurements (Keysight Technologies)

Thank you for your attention !

