Signal Integrity Seminar

Oscilloscope Measurements

Contents

- Oscilloscopes and their parameters
- Probes, probe loading minimization

- HW accelerated eye and clock recovery
- Jitter measurements
- Equalization and Embedding/De-embedding
- Crosstalk measurement and characterization

Oscilloscopes and their parameters

Real-time vs. Equivalent-sampling Parameters vs. performance

www.HTEST.cz

3

Oscilloscopes

- Capture behavior of an electrical signal in time
- **DSO** = Digital Storage Oscilloscope
 - Samples & displays analog signal

Oscilloscope types

- Real-time Scope
 - Single-shot capture with high sample rate (up to 256 GSa/s)
 - Behaves similarly to "Fast ADC"
 - Suitable for most signals
- Equivalent-time sampling scope
 - Low sample rate (typ. <100 MSa/s)
 - Each sample taken from different signal period, then signal is reconstructed
 - Only for periodic signals

Real-time oscilloscopes

Sampling rate >> Signal frequency

Equivalent-time sampling oscilloscopes

Sampling rate << Signal frequency

Real-Time vs. Equivalent-sampling advantages

Real-time Oscilloscope

- Captures one-time transients
- No explicit trigger needed
- Does not require a repetitive waveform
- Cycle to cycle jitter direct measurement
- Large record lengths
- Up to 110 GHz
- Great for troubleshooting

Equivalent-sampling Oscilloscope

- Higher resolution ADC (16bit vs. 10bit)
- Wider bandwidth
- Lower noise floor
- Lower intrinsic jitter
- Can include front end optical modules
- Only solution for frequencies
 above 110 GHz
- Can achieve solutions at a reduced cost (~90k\$ vs. 1M\$ at 100 GHz)

Oscilloscope parameters

- ADC Number of bits
- ENOB:
 - Effective Number Of Bits
 - (ADC ENOB vs. System ENOB)

Oscilloscope	ADC-bits	ENOB at 1GHz
Keysight MXR	10 bits	8,0 bits
Manufacturer 1	12 bits	8,4 bits
Manufacturer 2	12 bits	8,45 bits

- Bandwidth should be sufficient but not too wide
- Frequency characteristic should be flat
- Sampling frequency
- Noise floor varies with DC offsets

Bandwidth choice

Optimal choice depends on the measured signal.

Example: noise at 20 MHz sinewave

Noise power: $P_N = kTB$ is proportional to bandwidth B

Keysight scopes are able to reduce bandwidth by both HW and SW filters!

Frequency response flatness

20 MHz to 2 GHz frequency chirp Both oscilloscopes with 1 GHz bandwidth

Other manfacturer

Keysight

Protocols and frequencies

Protocol	Symbol rate	Scope Bandwidth	Application
Ethernet 1000BASE-T	125 MBd (4 páry)	>= 1 GHz	LAN
Ethernet 1000BASE-T1	750 MBd (1 pár)	>= 2.5GHz	Automotive, IoT
USB 2.0	480 Mbd (Mbit/s)	>=2 GHz	
USB 3.2	5 Gbit/s (10 Gbit/s Gen2)	>=13 GHz (16 GHz Gen2)	
USB 4	20 Gbit/s	>=33 GHz	
DDR4-3200	3200 GT/s	>= 13 GHz	
DDR5-7200	7200 GT/s	>= 16 GHz	
CAN (FD)	1 Mbit/s (15 Mbit/s)	>= 50 MHz (100 MHz)	Automotive
I2C	5 Mbit/s	>= 70 MHz	Embedded

Oscilloscope Probes

Connection to circuit Probe loading Review of probes

Connection to the circuit: the options

- 1. Connectors:
 - Coaxial cables/connectors size depends on frequency
 - 1mm (up to 110 GHz), Precision BNC (up to 18-20 GHz)
- 2. Fixtures:
 - Interface for a particular device or connector
- 3. Probes

Fixture examples

U7242A USB 3.0 Test Fixture

AE6941A Automotive Ethernet Test Fixture

N5395C Ethernet 10/100/1G Tx Test Fixture

Fixture examples

Ideal probe

- Reaches any point of DUT
- Presents perfect signal replica
- Infinite range, resolution and without noise
- Does not affect the probed circuit

Ideal probe does not exist!

Scope vs. System bandwidth

• Oscilloscope + probe are a system, both limit the performance

$$BW_{system} = \frac{1}{\sqrt{\frac{1}{\left(BW_{scope}\right)^2} + \frac{1}{\left(BW_{probe}\right)^2}}}$$

- $\sqrt{2}$ -factor BW reduction, when $BW_{scope} = BW_{probe}$
- Examples:
 - 300 MHz probe, 500MHz scope \rightarrow 257 MHz system
 - 1GHz probe, 1GHz scope \rightarrow 707 MHz system
- Rule of thumb: Rise time (10-90%) [µs] × 3db Bandwidth (MHz) = 0.35
 - 1 GHz BW ↔ 0,35 ns maximal rise time

Probe types

- Distorts the signal Depends on probe frequency response
- Loads probed circuit = Probe Loading
- Requires leads to signals and possibly ground (single-ended)

Probe Loading

Probe Loading

N2873A 500-MHz passive probe 15-cm alligator ground lead:

N2796A 2-GHz active probe 1.8-cm ground lead:

Passive Probes

Passive Probes

- Rugged
- Inexpensive
- Wide dynamic range
- High impedance
 - High capacitance loading
 - Up to 1 GHz
- Low impedance
 - Require 50Ω scope input
 - Low C/high R loading
 - Up to 1,5 GHz

Active probes

- Less parasitics
- More expensive
- Both differential and single-ended

InfiniiMax vs. InfiniiMode Active probes

InfiniiMax

- Up to 30 GHz bandwidth
- A-B, A, B, (A+B)/2 modes
- Modular system
- Solder-in, browser, socketed tips
- Lowest probe loading
- S-parameter corrections
- Damping resistor tips

InfiniiMode

- 1,5 6 GHz bandwidth
- A-B, A, B, (A+B)/2 modes
- Solder-in, browser, socketed tips
- Dual attenuation ratio (2:1,10:1)
- Cost effective

InfiniiMax probe family

	InfiniiMax I 1130B-34B	InfiniiMax II 1168B/69B	InfiniiMax III N2801A-03A	InfiniiMax III+ N2830A-32A N7000A-03A	InfiniiMax RC MX0023A	InfiniiMax Ultra MX0020-25A
Probe interface	AutoProbe I	AutoProbe I	AutoProbe II	AutoProbe I or II	AutoProbe II	AutoProbe II
1.5 GHz	1130B					
3.5 GHz	1131B					
4 GHz				N2830A (IM)		
5 GHz	1132B					
7 GHz	1134B					
8 GHz				N2831A (IM) N7000A (IM)		
10 GHz		1168B				MX0020A (IM)
13 GHz		1169B		N2832A (IM) N7001A (IM)		MX0021A (IM)
16 GHz				N7002A (IM)		MX0022A (IM)
20 GHz			N2801A	N7003A (IM)		MX0024A (IM)
25 GHz			N2802A		MX0023A	MX0025A (IM)
30 GHz			N2803A			

RCRC vs. RC impedance profile

www.HTEST.cz

AHTEST

InfiniiMax III/III+ Probing system

Browser probe heads

- General-purpose
 troubleshooting
- Hand-held measurement
- Up to 30 GHz BW

SMA differential probe

- Saves channels
- Minimal skew
- Semi-rigid cables
- Possible DC offset (±4V)
- Up to 30 GHz

Solder-in probes

- Best conection fidelity
 - low parasitics
- Reliable joint
- Good repeatibility
- Various options:
 - Quick tip (16 GHz)
 - ZIF Zero insertion force (28 GHz)
 - Solder-in head (26 GHz)

Lever

ZIF Tip Inserts Here

Power rail probe

- High DC offset possible (up to 24 V)
- High DC impedance 50 $k\Omega$
- 2 or 6 GHz bandwidth
- Suitable for measuring noise, ripple, or crosstalk on DC power rails

Keysight Probe Resource Center

- Datasheets, user guides for probes, heads, fixtures and accessories
 - Browsable by Scope/Probehead/Amplifier
- Application notes
- Selection guides
- Spice models
- Kept up-to-date

prc.keysight.com

Keysight Probe Resource Center

Online: https://prc.keysight.com/

							Search	
Contents 🗐 Index	0 🗉							S
 Keysight Probe Resource Center New For This PRC Version Probe-to-Oscilloscope Interfaces Probing Application Notes Selection Guides SPICE Models 	Active Differential InfinilMode active differential probes of signals with a single probe tip without configures the Infiniium series of osci Learn About Probe Types Learn About the Probe-to-Osci	Probes (1 come with InfiniiM treconnecting the lloscopes for the p	CnfiniiMo ode operation mo probe to change orobes. ces	de) odes. The InfiniiMode all the connection. They a	lows convenient measure compatible with the	surements of differential, Infiniium oscilloscope's,	single-ended, and commo AutoProbe interface, which	n mode h completely
Videos Browse by Model	Model	Тура	Interface	Bandwidth	Attenuation	Input Z	Dynamic Bange	
 Browse by Probe Amplifier Browse by Probe Head Browse by Scope Browse by Type Active Differential Probes (InfiniiMode Active Differential Probes 	MX0020A/21A/22A/24A/25A	InfiniiMode Active Differential	AutoProbe 2	MX0020A 10 GHz MX0021A 13 GHz MX0022A 16 GHz MX0024A 20 GHz MX0025A 25 GHz	1:1 4:1 8:1	Rse = 25 k Ω ± 2% each input to ground Rdiff = 50 k Ω ± 2%	0.6 Vpp, ±0.3 V at 1:1 attenuation 2.5 Vpp, ± 1.25 V at 4:1 attenuation 5.0 Vpp, ± 2.5 V @ 7.6:1 attenuation	
Extreme Temperature Probes High Voltage Differential Probes Dytical to Electrical Converter	N7000/1/2/3A	InfiniiMode Active Differential	AutoProbe 2	8 GHz (N7000A) 13 GHz (N7001A) 16 GHz (N7002A) 20 GHz (N7003A	5:1 or 10:1	1 kΩ (differential mode)	±1.25V or 2.5Vpp (at 5:1) ±2.5V or 5Vpp (at 10:1)	
Passive Probes Single-Ended Active Probes TDR Probes Fixtures and Accessories	N2830/1/2A	InfiniiMode Active Differential InfiniiMax III+	AutoProbe 1	4 GHz (N2830A) 8 GHz (N2831A) 13 GHz (N2832A)	5:1 or 10:1	1 kΩ (differential mode)	±1.25V or 2.5Vpp (at 5:1) ±2.5V or 5Vpp (at 10:1)	
Videos	N2752A	InfiniiMode Active Differential	AutoProbe 1	6 GHz	2:1 or 10:1	200 kΩ, 700 fF	±1V, 2Vpp (at 2:1) ±5V, 10Vpp (at	

Summary

- Real-time scopes are usually more flexible than equivalent sampling scopes
- Scope should be chosen with respect to the signals to be captured
- Connection to the circuit (probing) affects (loads) the circuit and modifies signal
- Keysight provide variety of probing systems and fixtures that cover frequency range up to 30 GHz
- Oscilloscope and probe are a system, the overall parameters are affected by both

Eye-diagram measurements

Clock recovery HW-acceleration Jitter analysis Crosstalk analysis

InfiniiVision = "Debug scopes"

- InfiniiVision 3000G
 - 100MHz 1GHz
 - Histogram analysis

- InfiniiVision 6000X
 - 1GHz 6GHz
 - Histogram analysis
 - Jitter, TIE plot
 - Eye diagram

Infiniium = "Analysis scopes"

- EXR, MXR and UXR platform: 500 MHz 110GHz
- Basic applications:
 - Segmented memory, History mode
 - Clock recovery
 - Eye-diagram (HW accelerated for UXR,MXR)
 - Fault hunter
- Available applications
 - Vertical, timing, and phase noise analysis EZJIT D9110JITA
 - De-embedding D9110DMBA
 - Equalization and crosstalk D9110ASIA
 - Power rail and PMIC integrity D9110POWA
 - Protocol decoding, Compliance SW, etc.

Clock recovery

Clock signal is required for almost all measurements, e.g. eye diagram, jitter and crosstalk analysis, etc. More information in the previous part of presentation.

Eye-diagram formation

Real-time eye diagram

 \square

949.3 ns

0.0 s

of 8 Mask 1 Failures

949.8 ns

33.2 ps

- Deep acquisition folded to create Eye-diagram
 - Can be unfolded to find failure mask-based
- HW acceleration possible for MXR and UXR
 - ASIC-based 200k waveforms/second, 750k UI/second

948.8 ns

-33.2 ps

Bit qualification filters incl. 8-bit pattern 0/X/1

948.3 ns

-66.5 ps

Control Setup Display Trigger Measure/Mark Math Analyze Utilities Demos Help

947.8 ns

-99.7 ps

Bandwidth

Unfold Real-Time Eye 🛛 🚺 ? 🗙

To position to the first failure, stop

the acquisition when failures have occurred. You may use Stop on Failure in the Mask Test dialog.

Use the Navigation buttons under

the Waveforms to search for Mask

Real-Time Eye

4.154 kUI 1 Wfms

947.3 ns

🖌 Show Mask Failures

Failures

946.8 ns

-166 ps

H) 500 ps/

-133 ps

√√ 949.2946 ns

HW acceleration

Not available for all settings – setup guide provided

Hardware Acceler	Hardware Acceleration												
Real-Time Eye	qualization												
Waveform	Reason	Suggested Fix	Dialog	Auto Setup									
Channel 1	Clock Recovery method (Constant Frequency) is not supported in hardware.	Use one of the PLL methods, such as Second Order PLL.	Clock Recovery Setup	Auto									
Channel 1	Measurement Threshold (10%,50%,90% of top, base) is not supported in hardware.	Use Hysteresis Thresholds.	Measurement Thresholds	Auto									
Channel 1	Fast Plot Mode is required when Real-Time Eye is on to use hardware acceleration.	Turn on Fast Plot, although this is often forced off by another reason.	Acquisition Setup										
Channel 2	Clock Recovery method (Constant Frequency) is not supported in hardware.	Use one of the PLL methods, such as Second Order PLL.	Clock Recovery Setup	Auto									
Channel 2	Measurement Threshold (10%,50%,90% of top, base) is not supported in hardware.	Use Hysteresis Thresholds.	Measurement Thresholds	Auto									
Channel 2	Clock recovery runs faster in software when not displaying the Real-Time Eye.												

Infinium FaultHunter

- Learns good signal from first 30s and looks for rare faults for up to 48 hours
- Glitch, slow edges, runt (small amplitude)

File	e Cont	trol S	etup Display Trigger	Measure/I	Mark Math A	nalyze Utilities	Demos He	elp				-	_	_	_	4:51 PM 10/5/2020			
Run	Stop S	Single 7	16 0 GSa/s 80 0 kpts		~~~~~	~~~~~	~~~~	~~~~~	4	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ћ	Ban	ndwidth	Stop'd	I T	16.8 mV	50	- N
Ę	1 100	200	Fault Hunter																
ne M		\leq	Fault Hunter automatically finds the most common types of signal faults. It begins by getting statistics on standard measurements and then runs tests to find outliers.																800 mV
leas																			
Ver			Source 🌔	Triggering -	- Finds rare fa	ults, restricted I	imits.	Duration		_									600 mV
tical	٨	٨	Channel 1	Limit Test -	· Mav miss rar	e faults, unrestr	icted limits	Run for a mir	nute 🔽 Autosca	le		۸ ۱	۸۸	ΛA	Λ /	۸۸	۵ ۸ ۸	۸۸	
Me	- A-)		1.	$\left\ \right\ $				_{	400 mV
as																			
	-	4	Auto Setup 🗹 Run	All after A	uto Setup R	un All Tests													200 mV
			Results																
	7		Test	Result		Mean	Std Dev	Ac	ceptable Range										0.0 V
	Ŧ		Positive Glitch	Passed	49.9 ns		167 ps	>24.9403 ns	$\mathbf{\nabla} \mathbf{\wedge}$	Run Vie	w Copy to Trig								
Me			Negative Glitch	Passed	49.9 ns		1.01 ns	>24.9403 ns		Run Vie	w Copy to Trig								-200 mV
as			Slow Rising Edge	Passed	16.2 ns		99 ps	<16.4837 ns		Run Vie	w Copy to Trig		111.						
ure			Slow Falling Edge	Dassed	16 4 ne		110 pe	< 16 6872 ps		Rup Vie			-{ {			44		()	-400 mV
me		V V			10.4 115	M . LK 400 M	1.00 p3				Copy to Trig	V	V V	V	VV	VV	VV	VVI	
ent			Positive Runt	Falled	Low -401 m	IV : HI 432 MV	1.66 MV	>-234.5 mv	and < 265.7 mV	Rantvie	w Copy to Ing								-600 mV
N.			Negative Runt	Passed	Low -401 m	NV : Hi 432 mV	1.66 mV	>-234.5 mV	and < 265.7 mV	Run Vie	w Copy to Trig								
			L						<u> </u>			4							-800 mV
	-2.50 µs		-2.00 µs	-1.5	50 µs	-1.00 µs	-5	500 ns	0.0 s	500 ns	1.00 µs		1.	.50 µs		2.0	0 µs	2	.50 µs 1
\otimes	H 50)0 ns/	0.0 s		🕕 🕒 » 🗖														

Optional applications

Jitter analysis Crosstalk analysis

www.HTEST.cz

45

Jitter analysis – TIE error

• Time interval error is monitored for each transition

Sources of TIE are shown on the next slide

Jitter Classification & Identification

Jitter Classification & Identification

	acronym	bounded/ unbounded	correlated/ uncorrelated	periodic/ aperiodic	Example cause
Random Jitter	RJ	Unbounded	Uncorrelated	Aperiodic	Thermal noise
Deterministic Jitter	DJ	Bounded	Either	Either	Inter-Symbol Interference
Periodic Jitter	PJ	Bounded	Either	Periodic	Power supply feed-through
Sinusoidal Jitter	SJ	Bounded	Uncorrelated	Periodic	Electromagnetic interference
Data- Dependent Jitter	DDJ	Bounded	Correlated	Aperiodic	Impedance mismatch
Duty-Cycle Distortion	DCD	Bounded	Correlated	Periodic	Clock asymmetry
Inter-Symbol Interference	ISI	Bounded	Correlated	Aperiodic	Non-uniform frequency response of a transmission line
Bounded Uncorrelated Jitter	BUJ	Bounded	Uncorrelated	Aperiodic	Crosstalk

Jitter analysis workflow

dual-Dirac model

Intrinsic Oscilloscope Jitter

- Vertical noise affects the jitter, the amount depends on slew rate
- Sample clock jitter affects the measurement as well
- Can be compensated by the EZJIT application
- Values: MXR ~118 181 fs_{RMS}, UXR 15-50 fs_{RMS}

D90x0ASIA Advanced Signal Integrity Software

- Equalization:
 - FFE, DFE and CTLE modelling
- InfiniiSim:
 - Embedding and De-embedding
 - Insert channel effects
 - Software replacing of channel elements
 - Basic features available also in D9110DMBA
- Crosstalk:
 - In-depth analysis and quantification
 - Identify crosstalk agressors including power supply
 - Remove crosstalk effects
 - Waveform without crostalk can be used for EZJIT

Serial Data Equalization (SDE)

- Reduces ISI (inter-symbol interference)
- Compensates for losses on higher frequecies
- Opens the eye comparison available
- Tap optimization for higher/wider eye
- Options:
 - FFE Feed-forward eq.
 - CTLE Continuous-time linear eq. (USB3 compatible)
 - DFE decision feedback eq. (adaptive)
- Works on any data pattern

InfiniiSim – Embeding/DeEmbeding

- Compares transfer functions of measurement and simulation circuit
- Shows signal from a point that cannot be probed
- Removes scope input reflection or probe-loading
- Can simulate addition or replacement of a channel element
- Custom setups with up to 27 elements

Power supply crosstalk analysis

Data agressor \rightarrow PSU victim e.g. Ground bounce, Vcc bounce

PSU agressor \rightarrow Data victim

PS aggressor \rightarrow data victim

PS aggressor \rightarrow data victim

PS aggressor \rightarrow data victim

Transmission Line Crostalk analysis

- Identification of victim-agressor pairs
- NEXT and FEXT identification
- Inter-symbol interference estimation
- Allows crosstalk removal

	Re	esults (Measure All	Edges)	_	_	FFFFF	_	_	_	_	_	8
g	8	Vic:Aggr	Volt, Skew (s)	Volt, Error (rms)	Volt, Error (p-p)	V high, Error (rms)	V high, Error (p-p)	V low, Error (rms)	V low, Error (p-p)	Time, Skew (s)	Time, Error (rms)	Time, Error (p-p)	
Km	ssta	c1:c1		38%	74%						32%	17%	
Ę.	₩.	c1:c2	-25.00 ps	9%	14%								
8 ()		c1:c4				6%	11%	2%	2%	-10.00 ns	15%	11%	

FEXT removal example

Summary

- InfiniiVision and Infiinium oscilloscope families
- Clock recovery is crucial for advanced measurements
- HW accelerated eye diagram improves the chance of capturing rare faults
- Basic eye diagram analysis available in all Infiniium scopes
- Advanced software options available:
 - Jitter analysis
 - Crosstalk analysis
 - Equalization (FFE, CTLE, DFE)
 - InfiniiSim Embedding/De-embedding

Thank you for your attention!

www.HTEST.cz

62